最佳示波器探头的选择
目前,市场上提供了数百种、甚至上千种不同的示波器探头。示波器探头的一个技术指标是频率特性,按频率划分探头的种类有其方便之处,但是示波器探头的频率覆盖范围有限很难按无线电频率的LF、HF、VHF、UHF、RF等波段来划分。示波器探头是所有探头中的一种,最常使用的探头是电压电流探头,而探头通常是按测量对象进行分类的。
1.无源电压探头
1.1 无源探头
无源探头由导线和连接器制成,在需要补偿或衰减时,还包括电阻器和电容器。探头中没有有源器件(晶体管或放大器),因此不需为探头供电。无源探头一般是最坚固、最经济的探头,它们不仅使用简便,而且使用广泛。
1.2 高阻无源电压探头
从实际需要出发,使用最多的是电压探头,其中高阻无源电压探头占最大部分。无源电压探头为不同电压范围提供了各种衰减系数1×,10×和100×。在这些无源探头中,10×无源电压探头是最常用的探头。对信号幅度是1V峰峰值或更低的应用,1×探头可能要比较适合,甚至是必不可少的。在低幅度和中等幅度信号混合(几十毫伏到几十伏)的应用中,可切换1×/10×探头要方便得多。但是,可切换1×/10×探头在本质上是一个产品中的两个不同探头,不仅其衰减系数不同,而且其带宽、上升时间和阻抗(R和C)特点也不同。因此,这些探头不能与示波器的输入完全匹配,不能提供标准10×探头实现的最优性能。
1.3 低阻无源电压探头
大多数高阻无源探头的带宽范围在小于100MHz到500MHz或更高的带宽之间。而低阻无源电压探头(又称为50欧姆探头、Zo探头、分压器探头)的频率特性很好,采用匹配同轴电缆的探头,带宽可达10GHz和100皮秒或更快的上升时间。这种探头是为用于50欧姆环境中设计的,这些环境一般是高速设备检定、微波通信和时域反射计(TDR)。
1.4 无源高压探头
“高压”是相对的概念。从探头角度看,我们可以把高压定义为超过典型的通用10×无源探头可以安全处理的电压的任何电压。高压探头要求具有良好的绝缘强度,保证使用者和示波器的安全。
2 有源电压探头
2.1 有源探头
有源探头包含或依赖有源器件,如晶体管。最常见的情况下,有源设备是一种场效应晶体管(FET),它提供了非常低的输入电容,低电容会在更宽的频段上导致高输入阻抗。可以从下面的Xc公式中看出:
2.2 有源FET探头
有源FET探头的规定带宽一般在500MHz ~4GHz之间。除带宽更高外,有源FET探头的高输入阻抗允许在阻抗未知的测试点上进行测量,而产生负荷效应的风险要低得多。另外,由于低电容降低了地线影响,可以使用更长的地线。
有源FET探头没有无源探头的电压范围。有源探头的线性动态范围一般在±0.6V到±10V之间。
2.3 有源差分探头
差分信号是互相参考,而不是参考接地的信号。差分探头可测量浮置器件的信号,实质上它是两个对称的电压探头组成,分别对地段有良好绝缘和较高阻抗。差分探头可以在更宽的频率范围内提供很高的共模抑制比(CMRR)。
3. 电流探头
从原理上来看,用电压探头测得电压值,除以被测阻抗值,很容易就可以获得电流值。然而,实际上这种测量引入的误差很大,所以一般不采用电压换算电流的方法。电流探头可以精确测得电流波形,方法是采用电流互感器输入,信号电流磁通经互感变压器变换成电压,再由探头内的放大器放大后送到示波器。
从原理上来看,用电压探头测得电压值,除以被测阻抗值,很容易就可以获得电流值。然而,实际上这种测量引入的误差很大,所以一般不采用电压换算电流的方法。电流探头可以精确测得电流波形,方法是采用电流互感器输入,信号电流磁通经互感变压器变换成电压,再由探头内的放大器放大后送到示波器。
3.1 交流电流探头
交流电流在互感器中,随着电流方向的变化,产生电场的变化,并感应出电压。交流电流探头属于无源设备,无需外接供电。
3.2 直流电流探头
传统电流探头只能测量交流交流信号,因为稳定的直流电流不能在互感器中感应电流。然而,利用霍尔效应,电流偏流的半导体设备将产生与直流电场对应的电压。所以,直流电流探头是一种有源设备,需要外接供电。
所以电流探头基本上分成两类:即AC电流探头和AC/DC电流探头,AC电流探头通常是无源探头,AC/DC电流探头通常是有源探头。
3.4. 逻辑探头
使用示波器观察分析数字波形的模拟特点时,需要用到逻辑探头,为隔离确切地成因,数字设计人员通常需要查看在具体逻辑条件下发生的特定数据脉冲,这要求逻辑触发功能。可以在大多数示波器中增加这种逻辑出发功能。
3.5.其他探头
由于示波器的应用范围十分广泛,所以除了上述的探头类型外还有各种专用探头,这些专业探头根据其前端传感器的不同而有不同的功用,下面我们介绍其中的两种,仅供读者了解。
光电探头在原理上是普通电压探头与光电转换器件的组合,可直接测量光器件和光纤传输的光信号。
温度探头是普通电压探头与温度传感器的组合,可直接测量物体的温度。温度探头属传感器探头的一种,各种传感器探头与示波器配合可测量多种物理量。
4. 示波器探头对测量的影响
4. 负载效应
4.1 负载效应
所谓负载效应就是在被测电路上接入示波器时,有时示波器的输入电阻会对被测电路产生影响,致使被测电路的信号发生变化。若负载效应的影响很大,就不能准确地进行波形测量。若要减小负载效应,就需要将示波器一端的输入电阻增大。输入电阻越大,输入电容越小,负载效应就越小。
在示波器测量中,另外一种负载效应指的是探头对被测电路的负载效应,为保证测量的准确性,需要减轻探头对被测电路的负载效应,不至影响到被测信号,因此应选择高输入阻抗的探头。探头的输入阻抗可以等效为电阻与电容的并联。低频时(1MHz以下)探头的负载主要是阻抗作用;高频时(10MHz以上)探头的负载主要是容抗作用。为了减轻探头对被测电路的负载作用,应选择高阻抗、低容抗的探头,例如带宽100MHz用的无源探头,它的输入电阻是1~10Ω,输入电容是1~10pF。有源探头的负载作用优于无源探头,频率特性更好。
4.2 阻抗匹配
阻抗是电压和电流之比,在理想情况下,对被测仪器进行测试时不应影响它的正常工作,测量值也应和未接测试仪器时相同。当连接仪器进行测量时,要考虑阻抗对测量准确性的影响,为了保证仪器之间能够传送最大的功率,阻抗应该匹配。如果阻抗为纯电阻,应使输入阻抗与输出阻抗的值相等。如果阻抗包含电抗成分应使负载的输入阻抗与源的输出阻抗共轭匹配,这时能够传送最大功率。
阻抗匹配的阻抗值通常和使用的传输线的特性阻抗值一致。对于射频系统,一般采用50Ω阻抗。对于高阻抗仪器,由于等效并联电容的存在,随着频率升高,并联组合阻抗逐渐变小,将对被测电路形式负载。如1MΩ输入阻抗,在频率达到100MHz时,等效阻抗只有100Ω左右。因此,高带宽的示波器一般都采用50Ω输入阻抗,这样可以保证示波器与源端的匹配。但是使用50Ω输入阻抗时,必须考虑到50Ω输入阻抗的负载效应比较明显,此时最好使用低电容的有源探头。
4.3 电容负荷
随着信号频率或转换速率提高,阻抗的电容成分变成主要因素。结果,电容负荷成为主要问题,特别是电容负荷会影响快速转换波形的上升时间和下降时间及波形中高频成分幅度。
5.示波器探头的主要技术指标
5.1 带宽和上升时间
探头的带宽是指导致探头响应输出幅度下降到70.7%(-3dB)的频率。上升时间是指探头对步进函数10~90%的响应,表明了探头可以从头部到示波器输入传送的快速测量转换。大多数探头,带宽与上升时间乘积接近0.35。在很多情况下,带宽由脉冲上升时间验证来保证最小失真。
5.2 电容
探头头部电容指标是指探头探针上的电容,是探头等效在被测电路测试点或被测设备上的电容。探头对示波器一端也等效成一个电容,这个电容值应该与示波器电容相匹配。对10×和100×探头,这一电容称为补偿电容,它不同于探头头部电容。下面将继续介绍补偿电容。
5.3 畸变(Aberration)
畸变是输入信号预计响应或理想响应的任何幅度偏差。在实践中,在快速波形转换之间通常会立即发生畸变,其表现为所谓的“减幅振荡”。没有规定极限畸变的高频探头可以提供使人完全误解的测量。存在畸变可以说明严重失真的带宽和滚降(roll-off)特性。
6. 最佳示波器探头的选择
探头的特性和特点中最重要的参数就是带宽和输入阻抗,它们既要与示波器的带宽和输入阻抗匹配,又要将对被测电路的影响减到最小。因此选择探头时要综合考虑。
6.1 带宽和上升时间
探头的带宽或上升时间要等于或优于示波器的带宽。如果观察纯正弦信号,探头带宽等于被测信号频率的最高值即可;如观察非正弦信号,探头带宽应能容纳被测信号的基波和最重要谐波分量。为精确地测量脉冲的上升时间和下降时间,系统的上升时间(示波器和探头之和)应该比要测量的最快的上升时间快3-5倍。
6.2 阻抗匹配
探头的输入阻抗要与所用示波器的输入阻抗匹配,另外对被测电路的负载作用最少。对于低输入阻抗的示波器,应选择有源探头或50Ω输入阻抗的探头;对于高输入阻抗的示波器,应选择×10的探头。例如示波器的输入阻抗是1MΩ/10pF,探头输入阻抗最好是10MΩ/1pF,这样的探头既有10倍的信号衰减,对被测信号的负载很轻,又能与示波器输入阻抗匹配。
6.3 负载作用
减轻探头对被测电路的负载作用。除了选择输入阻抗高的探头外,还有记住探头输入阻抗随频率成反比例下降。
6.4 时间延迟的影响
每种探头对被测信号的延迟时间存在差异,在进行差分测量以及时间(或相位)一致性测量时,最好使用2个型号相同和电缆长度相等的探头。
6.5 良好的接地
探头的额定频率特性是在同轴系统内测得的结果。在实际电路应用时,往往探头处于非同轴匹配的系统内,因此探头的接地引线要尽量减短,把串联电感减到最小。如发现高阻探头接地不良,就要考虑使用低阻同轴探头或者与探头匹配的适配器、连接器和夹具。